徐州电子元器件网徐州PCB机元器件徐州多层电路板北京hdi加急打样工厂 免费发布多层电路板信息

北京hdi加急打样工厂

更新时间:2024-05-08 12:03:30 编号:s13m2fd1h81983
分享
管理
举报
  • 面议

  • PCB电路板

  • 6年

陈生

18938919530 1036958619

微信在线

产品详情

关键词
北京PCB电路板,PCB电路板
面向地区
阻燃特性
VO板
绝缘层厚度
常规板
层数
多面
基材
绝缘材料
有机树脂

北京hdi加急打样工厂

能够应用和生产,继而成为一个正式的有效的产品才是PCB layout终目的,layout的工作才算告一个段落。

那么在layout的时候,应该注意哪些常规的要点,才能使自己画的文件有效符合一般PCB加工厂规则,不至于给企业造成不必要的额外支出?

文章为大家总结了PCB layout一般要遵行的七大规则:


外层线路设计规则:
(1)焊环(Ring环):PTH(镀铜孔)孔的焊环比钻孔单边大8mil,也就是直径必需比钻孔大16mil.Via孔的焊环比钻孔单边大8mil,直径必需比钻孔大16mil.总之不管是通孔PAD还是Via,设置内径大于12mil,外径大于28mil,这点很重要!

(2)线宽、线距大于等于4mil,孔与孔之间的距离不要小于8mil。

(3)外层的蚀刻字线宽大于等于10mil.注意是蚀刻字而不是丝印。

(4)线路层设计有网格的板子(铺铜铺成网格状的),网格空处矩形大于等于10*10mil,就是在铺铜设置时line spacing不要小于10mil。

网格线宽大于等于8mil.在铺设大面积的铜皮时,很多资料都建议将其设置成网状。

但是一些攻城狮认为在散热方面不能以网格铺铜的优点以偏概全,应考虑到局部受热而会导致PCB变形的情况下,以损耗散热效果而保全PCB完整性为条件应采用网格铺铜。

这种铺铜相对铺实铜的好处就是:板面温度虽有一定提高,但还在商业或工业标准的范围之内,对元器件损害有限。

但是如果PCB板弯曲带来的直接后果就是出现虚焊点,可能会直接导致线路出故障,相比较的结果就是采用以损害小为优,真正的散热效果还是应该以实铜佳。

在实际应用中中间层铺铜基本上很少有网格状的,就是因温度引起的受力不均情况不象表层那么明显了,而基本采用散热效果更好的实铜。

(5)NPTH孔与铜的距离大于等于20mil。

(6)锣板(铣刀)成型的板子,铜离成型线的距离大于等于16mil,所以在layout的时候,走线离边框的距离不要小于16mil。同理,开槽的时候,也要遵循与铜的距离大于等于16mil。

(7)模冲成型的板子,铜离成型线的距离大于等于20mil。如果你画的板子以后可能会大规模生产,为了节约费用,可能会要求开模的,所以在设计的时候一定要预见到。

(8)V-CUT(一般在Bottom Mask和Top Mask层画一根线,好标注一下此地要V-CUT)成型的板子,要根据板厚设计;


内层线路设计规则:
(1)焊环(Ring环):PTH孔的焊环比钻孔单边大8mil,也就是直径必需比钻孔大16mil.Via孔的焊环比钻孔单边大8mil,直径必需比钻孔大16mil.(2)线宽、线距大于等于4mil。

(3)内层的蚀刻字线宽大于等于10mil。

(4)NPTH孔与铜的距离大于等于20mil。

(5)锣板(铣刀)成型的板子,铜离成型线的距离大于等于30mil(一般40mil)。

(6)内层无焊环的PTH钻孔到铜箔的距离保持在至少10mil(四层板),六层板至少11mil。

(7)线宽小于等于6mil线,且焊盘中有钻孔时,线与焊盘之间加泪滴。

(8)两个大铜面之间的隔离区域为12mil以上。

(9)散热PAD(梅花焊盘),钻孔边缘到内圆的距离大于等于8mil(即Ring环),内圆到外圆的距离大于等于8mil,开口宽度大于等于8mil.一般有四个开口,至少要二个开口以上。


钻孔设计规则
(1)PCB板厂原则上把“8”字形的孔设计成槽孔(环形孔)。所以建议在layout的时候尽量做成环形的,实在没有这个功能,可以放N多个圈圈,尽量多的错位叠起。

这样后环形槽就不会出现“狗要齿”了,制板厂也不会因为你的槽孔而断了钻头!

(2)小机械钻孔孔径0.25mm(10mil),一般孔径设计大于等于0.3mm(12mil)。

比这小的话或者刚好0.25mm,制板厂的人肯定会找你的。为什么呢,?【可以在(5)找下你要的答案】

(3)小槽孔孔径0.25mm(10mil),一般孔径设计大于等于0.3mm(12mil)。【同(2)】

(4)一般惯例,只有机械钻孔单位为mm;其余单位为mil.本人画图的习惯是,除了做库因为要量尺寸用mm,其余都用mil为单位,mil的单位小,实在方便。

(5)激光钻孔(镭射)孔径一般为4mil(0.1mm)-8mil(0.2mm)。一般6层以上、又非常密集的板子,才会采用这种技术。

例如手机主板,当然价格肯定会提高一个N个等级了。

埋孔,顾名思义埋在板层中间不见天日的,仅作为导通用的。盲孔,一头露在外面一头躲在里面的,通常也只作为导通用的。

而激光(镭射)钻孔,穿透厚度小于等于4.5mil,而是打出来的是圆台孔。所以别想用激光钻孔(镭射)工艺来打通PAD,Via勉强用用就不错了。所以放置PAD时千万注意,别忘了0.25mm限制。


文字设计原则:

文字线宽6mil以上,文字字高32mil以上,文字线框的线宽6mil以上。


孔铜与面铜设计原则
(1)一般成品面铜1OZ(35um)的板子,孔铜0.7mil(18um)。

(2)一般成品面铜2OZ(70um)的板子,孔铜0.7mil(18um)-1.4mil(35um)。


防焊设计原则
(1)防焊比焊盘大3mil(clearance)。【很多软件是默认设置的,可以自己找找看!】

(2)防焊距离线路(铜皮)大于等于3mil。

(3)绿油桥≥4mil,即IC脚的防焊之间的空隙(dam)。

(4)BGA位开窗和盖线大于等于2mil,设计绿油桥,不足此间距则开天窗制作。

(5)金手指板的金手指部分防焊打开,包含假手指。

(8)防焊形式的文字线径≥8mi,字高≥32mil。

PCB表面处理基本的目的是良好的可焊性或电性能。由于铜在空气中很容易氧化,铜的氧化层对焊接有很大的影响,很容易形成假焊、虚焊,严重时会造成焊盘与元器件无法焊接,正因如此,PCB在生产制造时,会有一道工序,在焊盘表面涂(镀)覆上一层物质,保护焊盘不被氧化。


目前国内板厂的PCB表面处理工艺有:喷锡(HASL,hot air solder leveling 热风平整)、OSP(防氧化)、全板镀镍金、沉金、沉锡、沉银、化学镍钯金、电镀硬金,当然,特殊应用场合还会有一些特殊的PCB表面处理工艺。


喷锡(热风平整)


热风整平工艺的一般流程为:微蚀→预热→涂覆助焊剂→喷锡→清洗。热风整平又名热风焊料整平(俗称喷锡),它是在PCB表面涂覆熔融锡(铅)焊料并用加热压缩空气整(吹)平的工艺,使其形成一层既抗铜氧化,又可提供良好的可焊性的涂覆层。热风整平时焊料和铜在结合处形成铜锡金属间化合物。PCB进行热风整平时要沉在熔融的焊料中;风刀在焊料凝固之前吹平液态的焊料;风刀能够将铜面上焊料的弯月状小化和阻止焊料桥接。热风整平分为垂直式和水平式两种,一般认为水平式较好,主要是水平式热风整平镀层比较均匀,可实现自动化生产。



优点:价格较低,焊接性能佳。

缺点:不适合用来焊接细间隙的引脚以及过小的元器件,因为喷锡板的表面平整度较差。在PCB加工中容易产生锡珠(solder bead),对细间隙引脚(fine pitch)元器件较易造成短路。使用于双面SMT工艺时,因为第二面已经过了一次高温回流焊,极容易发生喷锡重新熔融而产生锡珠或类似水珠受重力影响成滴落的球状锡点,造成表面更不平整进而影响焊接问题。




有机可焊性保护剂(OSP)


一般流程为:脱脂-->微蚀-->酸洗-->纯水清洗-->有机涂覆-->清洗,过程控制相对其他表明处理工艺较为容易。OSP是印刷电路板(PCB)铜箔表面处理的符合RoHS指令要求的一种工艺,估计目前约有25%-30%的PCB使用OSP工艺,该比例一直在上升。OSP工艺可以用在低技术含量的PCB,也可以用在高技术含量的PCB上,如单面电视机用PCB、高密度芯片封装用板, BGA应用OSP也较多。PCB如果没有表面连接功能性要求或者储存期的限定,OSP工艺将是理想的表面处理工艺。



优点:制程简单,表面非常平整,适合无铅焊接和SMT。易返工,生产操作方便,适合水平线操作。板子上适合多种处理并存(比如:OSP+ENIG)。成本低,环境友好。

缺点:回流焊次数的限制 (多次焊接厚,膜会被破坏,基本上2次没有问题)。不适合压接技术,线绑定。目视检测和电测不方便。SMT时需要N2气保护。SMT返工不适合。存储条件要求高。



全板镀镍金


板镀镍金是在PCB表面导体先镀上一层镍后再镀上一层金,镀镍主要是防止金和铜间的扩散。现在的电镀镍金有两类:镀软金(,金表面看起来不亮)和镀硬金(表面平滑和硬,耐磨,含有钴等其他元素,金表面看起来较光亮)。软金主要用于芯片封装时打金线;硬金主要用在非焊接处的电性互连。



优点:较长的存储时间>12个月。适合接触开关设计和金线绑定。适合电测试

弱点:较高的成本,金比较厚。电镀金手指时需要额外的设计线导电。因金厚度不一致,应用在焊接时,可能因金太厚导致焊点脆化,影响强度。电镀表面均匀性问题。电镀的镍金没有包住线的边。不适合铝线绑定。



沉金


一般流程为:脱酸洗清洁-->微蚀-->预浸-->活化-->化学镀镍-->化学浸金;其过程中有6个化学槽,涉及到近百种化学品,过程比较复杂。沉金是在铜面上包裹一层厚厚的、电性良好的镍金合金,这可以长期保护PCB;另外它也具有其它表面处理工艺所不具备的对环境的忍耐性。此外沉金也可以阻止铜的溶解,这将有益于无铅组装。



优点:不易氧化,可长时间存放,表面平整,适合用于焊接细间隙引脚以及焊点较小的元器件。有按键PCB板的(如手机板)。可以重复多次过回流焊也不太会降低其可焊性。可以用来作为COB(Chip On Board)打线的基材。

缺点:成本较高,焊接强度较差,因为使用无电镀镍制程,容易有黑盘的问题产生。镍层会随着时间氧化,长期的可靠性是个问题



沉锡


由于目前所有的焊料都是以锡为基础的,所以锡层能与任何类型的焊料相匹配。沉锡工艺可以形成平坦的铜锡金属间化合物,这个特性使得沉锡具有和热风整平一样的好的可焊性而没有热风整平令人头痛的平坦性问题;沉锡板不可存储太久,组装时根据沉锡的先后顺序进行。



优点:适合水平线生产。适合精细线路处理,适合无铅焊接,特别适合压接技术。非常好的平整度,适合SMT。

缺点:需要好的存储条件,好不要大于6个月,以控制锡须生长。不适合接触开关设计。生产工艺上对阻焊膜工艺要求比较高,不然会导致阻焊膜脱落。多次焊接时,好N2气保护。电测也是问题。



沉银


沉银工艺介于有机涂覆和化学镀镍/沉金之间,工艺比较简单、快速;即使暴露在热、湿和污染的环境中,银仍然能够保持良好的可焊性,但会失去光泽。沉银不具备化学镀镍/沉金所具有的好的物理强度因为银层下面没有镍。



优点:制程简单,适合无铅焊接,SMT。表面非常平整、成本低、适合非常精细的线路。

缺点:存储条件要求高,容易污染。焊接强度容易出现问题(微空洞问题)。容易出现电迁移现象以及和阻焊膜下铜出现贾凡尼咬蚀现象。电测也是问题



化学镍钯金


化学镍钯金与沉金相比是在镍和金之间多了一层钯,钯可以防止出现置换反应导致的腐蚀现象,为沉金作好充分准备。金则紧密的覆盖在钯上面,提供良好的接触面。



优点:适合无铅焊接。表面非常平整,适合SMT。通孔也可以上化镍金。较长的存储时间,存储条件不苛刻。适合电测试。适合开关接触设计。适合铝线绑定,适合厚板,抵抗环境攻击强。



电镀硬金


为了提高产品耐磨性能,增加插拔次数而电镀硬金。

随着频率的不断增加,控制印刷电路板(PCB)材料的相位一致性越来越难。准确预测线路板材料的相位变化并不是一项简单或常规的工作。高频高速PCB的信号相位在很大程度上取决于由其加工而成的传输线的结构,以及线路板材料的介电常数(Dk)。介质媒介的Dk越低(例如空气的Dk约为1.0),电磁波传播得越快。随着Dk的增加,波的传播会变慢,这种现象对传播信号的相位响应也会产生影响。当传播介质的Dk发生变化时,就会发生波形相位变化,因为较低或较高的Dk,会使信号在传播介质中的速度对应的变快或减慢。
线路板材料的Dk通常是各向异性的,在长度、宽度和厚度(对应x、y和z轴)三个维度中(3D)均具有不同的Dk值。对于某些特殊类型的电路设计,不仅需要考虑Dk的差异,还考虑到电路的加工制造对相位的影响。随着PCB工作频率的提高,尤其是在微波和毫米波频率下,例如:如第五代(5G)蜂窝无线通信网络基础设施设备、电子辅助汽车中的驾驶员辅助系统(ADAS),相位的稳定性和可预测性将变得越来越重要。

那么究竟是什么导致了线路板材料的Dk发生变化呢?在某些情况下,PCB上Dk的差异是由材料(例如铜表面粗糙度的变化)本身引起的。在其他一些情况下,PCB的制造工艺也会造成Dk的变化。此外,恶劣的工作环境(例如较高的工作温度)也会使PCB的Dk发生改变。通过了解材料的特性、制造工艺、工作环境、甚至Dk的测试方法,等多方面来研究PCB的Dk如何变化。这样能更好地理解、预测PCB的相位变化,并将其带来的影响小化。

各向异性是线路板材料的一种重要特性,Dk的特性非常类似于三维数学上的“张量”。三个轴上不同的Dk值导致了三维空间中电通量和电场强度的差异。根据电路所用的传输线类型,具有耦合结构电路的相位可以被材料的各向异性改变,电路的性能取决于相位在线路板材料上的方向。一般来说,线路板材料的各向异性会随板材的厚度和工作频率而变化,Dk值较低的材料各向异性较小。填充的增强材料也会造成这种变化:与没有玻璃纤维增强的线路板材料相比,具有玻璃纤维增强的线路板材料通常具有更大的各向异性。当相位是关键指标,并且PCB的Dk是电路设计建模的一部分时,描述比较两种材料之间的Dk值应该针对的是同一个方向轴线上的Dk。如需了解改变线路板材料Dk的多种因素(包括测量方法)的更多详细信息,请参阅罗杰斯公司的网络研讨会“UnderstandHow Circuit Materials and Fabrication Can Affect PCB Dk Variation and PhaseConsistency(了解线路板材料和制造工艺如何影响PCB的Dk变化和相位的一致性)”。

深入探讨设计Dk

电路的有效Dk取决于电磁波在特定类型传输线中的传播方式。根据传输线的不同,电磁波一部分通过PCB的介质材料传播,另外一部分会通过PCB周围的空气传播。空气的Dk值(约为1.00)低于任何电路材料,因此,有效Dk值实质上是一个组合Dk值,它由传输线导体中传播的电磁波、电介质材料中传播的电磁波,以及基底周围空气中传播的电磁波共同作用而确定。“设计Dk”就试图提供相对“有效Dk”更为实用的Dk,因为“设计Dk”同时考虑了不同传输线技术、制造方法、导线、甚至测量Dk的试验方法等多方面的综合影响。设计Dk是在电路形式下对材料进行测试时提取的Dk,也是在电路设计和仿真中适合使用的Dk值。设计Dk不是电路的有效Dk,但它是通过对有效Dk的测量来确定的材料Dk,设计Dk能反映电路真实性能。

对于特定的线路板材料,其设计Dk值可能会因为线路板不同区域的细微差异而发生变化。例如:构成电路导线的铜箔厚度可能会不均匀,这就意味着不同铜厚的地方设计Dk都会不同,并且由这些导体形成的电路的相位响应也会跟着发生变化。铜箔导体表面的粗糙程度也会影响设计Dk和相位响应,较光滑的铜箔(例如压延铜)对设计Dk或相位响应的影响要小于粗糙铜箔。

PCB介质材料的不同厚度中导体铜箔表面粗糙度对设计Dk和电路的相位响应产生不同影响。具有较厚基板的材料往往会受到铜箔导体表面粗糙度的影响较小,即使对于表面较为粗糙的铜箔导体,此时其设计Dk值也更接近于基板材料的介质Dk。例如,罗杰斯公司6.6 mil的RO4350B™线路板材料,在8至40GHz时,其平均设计Dk值为3.96。而对于厚度为30 mil的同一材料,设计Dk在相同频率范围内平均下降至3.68。当材料基板厚度再次增加一倍(60 mils)时,设计Dk为3.66,这基本就是这种玻璃纤维增强的层压板的介质固有Dk了。

从上面的举例中可以看出,较厚的介质基板受到铜箔粗糙度的影响较小,设计Dk值相对更低。但是,如果用较厚的线路板来生产加工电路,尤其是在信号波长较小的毫米波频率下,要保持信号幅度和相位的一致性就会更加困难。较高频率的电路往往更适合选用较薄的线路板,而此时材料的介质部分对设计Dk和电路性能影响较小。较薄的PCB基板在信号损耗和相位性能方面受导体的影响会更大一些。在毫米波频率下,就电路材料的设计Dk而言,它们对导体特性(如铜箔表面粗糙度)的敏感性也比较厚的基板要大一些。

如何选择传输线电路

在射频/微波和毫米波频率下,电路设计工程师主要采用以下几种常规的传输线技术,例如:微带线、带状线、以及接地共面波导(GCPW)。每种技术都有不同的设计方法、设计挑战、相关优势。例如,GCPW电路耦合行为的差异将影响电路的设计Dk,对于紧密耦合的GCPW电路,以及具有紧密间隔的传输线,利用共面耦合区域之间的空气,可以实现更的电磁传播,将损耗降到低。通过使用较厚的铜导体,耦合导体的侧壁更高,耦合区域中利用更多的空气路径可以大限度地减少电路损耗,但更为重要的是理解减小铜导体厚度变化带来的相应的影响。

许多因素都可以影响给定电路和线路板材料的设计Dk。例如,线路板材料的温度系数Dk(TCDk)这个指标,就是用来衡量工作温度对设计Dk及性能的影响,较低的TCDk值表示线路板材料对温度依赖性较小。同样,高相对湿度(RH)也会增加线路板材料的设计Dk,特别是对于高吸湿性的材料。线路板材料的特性、电路制造过程、工作环境中的不确定因素,都会影响线路板材料的设计Dk。只有了解这些特性,并且在设计过程中充分考虑这些因素,才能将其影响降到低。

上一条 打样 下一条热压

留言板

  • PCB电路板北京PCB电路板
  • 价格商品详情商品参数其它
  • 提交留言即代表同意更多商家联系我

公司资料

深圳市赛孚电路科技有限公司
  • 马志强
  • 广东 深圳
  • 私营有限责任公司
  • 2011-07-26
  • 人民币1000万
  • 301 - 500 人
  • PCB电路板
  • pcb电路板,pcb多层板,hdi线路板,pcb快板
小提示:北京hdi加急打样工厂描述文字和图片由用户自行上传发布,其真实性、合法性由发布人负责。
陈生: 18938919530
在线联系: 1036958619
让卖家联系我